首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67477篇
  免费   6042篇
  国内免费   3475篇
电工技术   2759篇
综合类   5061篇
化学工业   16210篇
金属工艺   4490篇
机械仪表   3083篇
建筑科学   3516篇
矿业工程   1833篇
能源动力   2080篇
轻工业   2927篇
水利工程   606篇
石油天然气   3207篇
武器工业   678篇
无线电   7791篇
一般工业技术   15540篇
冶金工业   3604篇
原子能技术   722篇
自动化技术   2887篇
  2024年   87篇
  2023年   1028篇
  2022年   1118篇
  2021年   1837篇
  2020年   2054篇
  2019年   1734篇
  2018年   1728篇
  2017年   2024篇
  2016年   1960篇
  2015年   1953篇
  2014年   3828篇
  2013年   3700篇
  2012年   4544篇
  2011年   4645篇
  2010年   3682篇
  2009年   4122篇
  2008年   3958篇
  2007年   5247篇
  2006年   5217篇
  2005年   4336篇
  2004年   2903篇
  2003年   2998篇
  2002年   2233篇
  2001年   1745篇
  2000年   1595篇
  1999年   1296篇
  1998年   1041篇
  1997年   751篇
  1996年   624篇
  1995年   513篇
  1994年   468篇
  1993年   351篇
  1992年   292篇
  1991年   268篇
  1990年   212篇
  1989年   171篇
  1988年   126篇
  1987年   83篇
  1986年   73篇
  1985年   86篇
  1984年   85篇
  1983年   43篇
  1982年   62篇
  1981年   26篇
  1980年   40篇
  1979年   24篇
  1978年   17篇
  1977年   15篇
  1976年   10篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
92.
《Ceramics International》2022,48(12):16813-16824
Cu?diamond composites have been proposed as a candidate thermal management material for spacecraft electronics. Nevertheless, irradiation effects on the composites remain poorly understood at present. Here we focus on investigating the influence of Cu?diamond interfaces (CDIs) on energetic displacement cascades using atomistic simulations. Results show that a primary knock-on atom of Cu (PKA-Cu) can induce more significant damage than a PKA-C. Under almost all circumstances, the statistically averaged fraction of surviving interstitials is not only lower than that of vacancies but also no more than 1. Because of the unique nature in the mobility and interactions with CDIs, Cu interstitials exhibit the lowest concentration among all defects in most cases. The high residual rate of displaced defects in diamond makes it relatively difficult to heal. The structural damage is mainly manifested in a short-range disorder of diamond and a long-range disorder of Cu after irradiation. At elevated temperatures, the atomic displacement region may form compact chain-like defects to restrain lattice loosening. Despite the above, CDIs could act as effective sinks to facilitate the recombination and/or annihilation of irradiation-induced defects in all scenarios. This study provides an important insight into the understanding of the microscopic evolution of irradiation defects for the composites.  相似文献   
93.
为了在腔磁力系统中实现可控的磁子诱导透明、磁力诱导透明以及快慢光传播,建立了一个混合腔磁力系统.该系统由一个含有YIG球的微波腔和在z方向对球施加一个均匀的偏置磁场组成,并用强泵浦场驱动磁子和弱探测场驱动微波腔.研究表明,通过调节腔与磁子之间的相互作用强度和微波腔与磁子的耗散比,可以增加磁子诱导透明(MIT)、磁力诱导透明(MMIT)的效果和提高快慢光传播的速度.该研究结果可为磁力诱导放大、量子光学操纵和量子信息存储以及灵敏光开关的研究提供参考.  相似文献   
94.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
95.
Functionally graded ceramics (FGC), which combine properties of different ceramics in one part, usually have better comprehensive function and structural efficiency. In this study, four different gradient transition Al2O3-ZrO2 FGC samples were prepared by laser directed energy deposition (LDED) method. The results show that there is an obvious interface in direct transition sample. The transition section bears tensile stress caused by difference of thermophysical properties of materials, resulting in significant longitudinal cracks. Element transition in interface region shows a step sharp transition. The direct transition sample shows intergranular fracture and the bonding strength is very low. Gradient transition mode can effectively suppress cracks, and avoid the step transition of microstructure and elements. Elements, microhardness of 25, 20 wt% FGC samples realized a nearly linear smooth transition. The interface fracture of FGC samples changed to transgranular fracture, bonding strength was significantly improved, and the maximum flexural strength reached 160.19 MPa.  相似文献   
96.
The electrochemical oxygen reduction reaction (ORR) via two-electron pathway is a sustainable way of producing hydrogen peroxide. Nanostructured carbon materials are proved to be effective catalysts for 2e? ORR. Herein, a series of mesoporous carbon with tunable nitrogen species and oxygen functional groups were synthesized by varying the added amount of dopamine hydrochloride as nitrogen and oxygen source. The modified catalysts exhibited higher content of pyrrolic-N and ether C–O groups which are confirmed by a series of characterization. Raman spectra and correlation analysis revealed that the increased proportion of defect sites in carbon materials are closely related to the introduced pyrrolic-N and ether C–O groups. And the rotating ring-disk electrode (RRDE) measurement carried out in 0.1 M KOH electrolyte showed the H2O2 selectivity increased with the content of defect sites. Among them, the optimized catalyst (NOC-6M) exhibited a selectivity of 95.2% and a potential of 0.71 V vs. RHE at ?1 mA cm?2. Moreover, NOC-6M possessed the high H2O2 production rate of 548.8 mmol gcat?1 h?1 with faradaic efficiency of 92.4% in a two-chamber H-cell. Further mechanistic analysis revealed that the introduction of pyrrolic-N and ether C–O are likely to improve the binding energy of the defect sites toward 1OOH intermediate, resulting in a more favorable 2e? ORR pathway for H2O2 production.  相似文献   
97.
Marigold flower (MG; Tagetes erecta) derived Graphene quantum dots (GQDs) have been successfully reported for the fabrication of supercapacitor electrodes in charge storage devices. The GQDs have been synthesized through a hydrothermal route using biomass viz. Waste material (MG) without adding any hazardous chemicals. The successful formation of GQDs as elaborated has been confirmed by various analytical characterization techniques. The as-synthesized GQDs have been electrodeposited on the Ni foil (working electrode) with the help of PVDF (binder) and subsequently, cyclic voltammetry (CV) has been conducted to access specific capacitance, energy density, and other parameters. Moreover, the galvanometric charge/discharge (GCD) technique has been employed due to its accuracy and reliability. Maximum areal specific capacitance has been found as 1.6008 F/cm2 with the current density of 2.0 A/g even after loading a little amount of material on the electrode. The high magnitude of columbic efficiency (160.08), energy density (17.78 Wh/kg), and specific capacitance of 200 F/g at current density 2.0 A/g within a voltage range of −0.55 V to +0.25 V in 2 M KOH electrolyte solution indicate a good electrocapacitive performance of the as-synthesized material. Moreover, the as-synthesized GQDs have shown excellent capacitive retention after 1000th cycles which clearly embarks its sustainable electrocapacitive nature and henceforth offers outstanding potential for the applications in energy storage devices like supercapacitors.  相似文献   
98.
99.
《Advanced Powder Technology》2021,32(8):3023-3033
Coccoliths are micro-structured biomineral particles found in cell protective covering layers of coccolithophore species. They are mainly composed of CaCO3 and their individual crystal entities are arranged in such a way that they construct complex and unique structures. This complexity is found down to the individual particle level and appears to have promising properties to offer. This study focuses on the essential step prior to any kind of implementation, which is the recovery of the material. It summarizes cleaning protocols found in literature, compares them for the first time for the same freshly cultivated material and addresses challenges that still need to be overcome. Further, it highlight the advantages and disadvantages of the best cleaning protocols, suggests optimizations with promising results and uses size distribution measurements to analyse the recovery efficiency. To that end, further characterization techniques, new for coccoliths, are introduced and used to improve our current knowledge of the particles behaviour.  相似文献   
100.
We present the results of a life-cycle assessment (LCA) for the manufacturing and end-of-life (EoL) phases of the following fuel-cell and hydrogen (FCH) technologies: alkaline water electrolyser (AWE), polymer-electrolyte-membrane water electrolyser (PEMWE), high-temperature (HT) and low-temperature (LT) polymer-electrolyte-membrane fuel cells (PEMFCs), together with the balance-of-plant components. New life-cycle inventories (LCIs), i.e., material inputs for the AWE, PEMWE and HT PEMFC are developed, whereas the existing LCI for the LT PEMFC is adopted from a previous EU-funded project. The LCA models for all four FCH technologies are created by modelling the manufacturing phase, followed by defining the EoL strategies and processes used and finally by assessing the effects of the EoL approach using environmental indicators. The effects are analysed with a stepwise approach, where the CML2001 assessment method is used to evaluate the environmental impacts. The results show that the environmental impacts of the manufacturing phase can be substantially reduced by using the proposed EoL strategies (i.e., recycled materials being used in the manufacturing phase and replacing some of the virgin materials). To point out the importance of critical materials (in this case, the platinum-group metals or PGMs) and their recycling strategies, further analyses were made. By comparing the EoL phase with and without the recycling of PGMs, an increase in the environmental impacts is observed, which is much greater in the case of both fuel-cell systems, because they contain a larger quantity of PGMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号